Skip to content

Explainer

The Explainer class is part of the jarvais.explainer module. It generates explainability reports for trained models.

jarvais.explainer.Explainer

Source code in src/jarvais/explainer/explainer.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class Explainer():

    def __init__(
        self,
        output_dir: str | Path,
        sensitive_features: list | None = None,
    ) -> None:

        output_dir = Path(output_dir)
        figures_dir = output_dir / 'figures'
        bias_dir = output_dir / 'bias'

        self.interpretation_module = ModelInterpretationModule(output_dir=figures_dir)
        self.importance_module = ImportanceModule(output_dir=figures_dir)
        self.bias_audit_module = BiasAuditModule(output_dir=bias_dir, sensitive_features=sensitive_features)

        self.settings = ExplainerSettings(
            output_dir=output_dir,
            interpretation=self.interpretation_module,
            importance=self.importance_module,
            bias_audit=self.bias_audit_module
        )

    @classmethod
    def from_settings(
            cls, 
            settings_dict: dict
        ) -> "Explainer":
        """
        Initialize an Explainer instance with a given settings dictionary. Settings are validated by pydantic.

        Args:
            settings_dict (dict): A dictionary containing the explainer settings.

        Returns:
            Explainer: An explainer instance with the given settings.
        """
        try:
            settings = ExplainerSettings.model_validate(settings_dict)
        except Exception as e:
            raise ValueError("Invalid explainer settings") from e

        explainer = cls(
            output_dir=settings.output_dir,
        )

        explainer.interpretation_module = settings.interpretation
        explainer.importance_module = settings.importance
        explainer.bias_audit_module = settings.bias_audit

        explainer.settings = settings

        return explainer

    def run(self, trainer: "TrainerSupervised") -> None:
        """Generate diagnostic plots and reports for the trained model."""

        # Run Modules
        self.bias_audit_module(trainer)
        self.interpretation_module(trainer)
        self.importance_module(trainer)

        # Generate Report
        generate_explainer_report_pdf(trainer.settings.task, self.settings.output_dir, self.settings.interpretation.shap)

        # Save Settings
        self.settings.settings_schema_path = self.settings.output_dir / 'explainer_settings.schema.json'
        with self.settings.settings_schema_path.open("w") as f:
            json.dump(self.settings.model_json_schema(), f, indent=2)

        self.settings.settings_path = self.settings.output_dir / 'explainer_settings.json'
        with self.settings.settings_path.open('w') as f:
            json.dump({
                "$schema": str(self.settings.settings_schema_path.relative_to(self.settings.output_dir)),
                **self.settings.model_dump(mode="json") 
            }, f, indent=2)

    def __rich_repr__(self) -> rich.repr.Result:
        yield self.settings

    def __repr__(self) -> str:
        return f"Explainer(settings={self.settings.model_dump_json(indent=2)})"

from_settings(settings_dict) classmethod

Initialize an Explainer instance with a given settings dictionary. Settings are validated by pydantic.

Parameters:

Name Type Description Default
settings_dict dict

A dictionary containing the explainer settings.

required

Returns:

Name Type Description
Explainer 'Explainer'

An explainer instance with the given settings.

Source code in src/jarvais/explainer/explainer.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
@classmethod
def from_settings(
        cls, 
        settings_dict: dict
    ) -> "Explainer":
    """
    Initialize an Explainer instance with a given settings dictionary. Settings are validated by pydantic.

    Args:
        settings_dict (dict): A dictionary containing the explainer settings.

    Returns:
        Explainer: An explainer instance with the given settings.
    """
    try:
        settings = ExplainerSettings.model_validate(settings_dict)
    except Exception as e:
        raise ValueError("Invalid explainer settings") from e

    explainer = cls(
        output_dir=settings.output_dir,
    )

    explainer.interpretation_module = settings.interpretation
    explainer.importance_module = settings.importance
    explainer.bias_audit_module = settings.bias_audit

    explainer.settings = settings

    return explainer

run(trainer)

Generate diagnostic plots and reports for the trained model.

Source code in src/jarvais/explainer/explainer.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def run(self, trainer: "TrainerSupervised") -> None:
    """Generate diagnostic plots and reports for the trained model."""

    # Run Modules
    self.bias_audit_module(trainer)
    self.interpretation_module(trainer)
    self.importance_module(trainer)

    # Generate Report
    generate_explainer_report_pdf(trainer.settings.task, self.settings.output_dir, self.settings.interpretation.shap)

    # Save Settings
    self.settings.settings_schema_path = self.settings.output_dir / 'explainer_settings.schema.json'
    with self.settings.settings_schema_path.open("w") as f:
        json.dump(self.settings.model_json_schema(), f, indent=2)

    self.settings.settings_path = self.settings.output_dir / 'explainer_settings.json'
    with self.settings.settings_path.open('w') as f:
        json.dump({
            "$schema": str(self.settings.settings_schema_path.relative_to(self.settings.output_dir)),
            **self.settings.model_dump(mode="json") 
        }, f, indent=2)

Explainer Modules

jarvais.explainer.modules.BiasAuditModule

Bases: BaseModel

Source code in src/jarvais/explainer/modules/bias_audit.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class BiasAuditModule(BaseModel):
    output_dir: Path = Field(
        description="Output directory for bias audit.",
        title="Output Directory",
        examples=["output"]
    )
    sensitive_features: list | None = Field(
        description="Sensitive features.",
        title="Sensitive Features",
        examples=["gender", "race", "ethnicity"]
    )
    fairness_threshold: float = Field(
        description="Fairness threshold.", 
        default=1.2,
        title="Fairness Threshold",
    )
    relative: bool = Field(
        description="Relative.",
        default=False,
        title="Relative",
    )

    def model_post_init(self, __context) -> None: # noqa: ANN001
        self.output_dir.mkdir(parents=True, exist_ok=True)

    def __call__(self, trainer: "TrainerSupervised") -> None:

        logger.info("Running Bias Audit Module...")

        test_data = (
            undummify(trainer.X_test, prefix_sep=trainer.settings.encoding_module.prefix_sep)
            if trainer.settings.encoding_module.enabled
            else trainer.X_test
        )

        if self.sensitive_features is None:
            logger.info("No sensitive features provided, inferring from data...")
            self.sensitive_features = infer_sensitive_features(test_data)

        y_pred = None if trainer.settings.task == 'survival' else pd.Series(trainer.infer(test_data))
        metrics = ['mean_prediction'] if trainer.settings.task == 'regression' else ['mean_prediction', 'false_positive_rate']

        if trainer.settings.task == 'binary':
            y_true_array = trainer.y_test.to_numpy()
            bias_metric = np.array([
                log_loss([y_true_array[idx]], [y_pred[idx]], labels=np.unique(y_true_array))
                for idx in range(len(y_true_array))
            ])
            y_pred = (y_pred >= .5).astype(int)
        elif trainer.settings.task == 'regression':
            bias_metric = np.sqrt((trainer.y_test.to_numpy() - y_pred) ** 2)

        for sensitive_feature_name in self.sensitive_features:
            _sensitive_column = test_data[sensitive_feature_name]
            if trainer.settings.task == 'survival':
                self._subgroup_analysis_coxph(trainer.y_test, _sensitive_column)
            else:
                f_pvalue = self._subgroup_analysis_ols(_sensitive_column, bias_metric)
                if f_pvalue < 0.05:
                    self._generate_violin(_sensitive_column, bias_metric, trainer.settings.task)
                    result = self._calculate_fair_metrics(trainer.y_test, y_pred, _sensitive_column, self.fairness_threshold, self.relative, metrics)

                    print(f"\n=== Subgroup Analysis for '{sensitive_feature_name.title()}' using FairLearn ===\n") # noqa: T201
                    table_output = tabulate(result.iloc[:, :4], headers='keys', tablefmt='grid')
                    print('\n'.join(['    ' + line for line in table_output.split('\n')]), '\n') # noqa: T201

                    result.to_csv(self.output_dir / f'{sensitive_feature_name}_fm_metrics.csv')


    def _generate_violin(self, sensitive_column: pd.Series, bias_metric:np.ndarray, task: str) -> None:
        """Generate a violin plot for the bias metric."""
        plt.figure(figsize=(8, 6)) 
        sns.set_theme(style="whitegrid")  

        sns.violinplot(
            x=sensitive_column, 
            y=bias_metric, 
            palette="muted",  
            inner="quart", 
            linewidth=1.25 
        )

        bias_metric_name = 'log_loss' if task == 'binary' else 'root_mean_squared_error'

        plt.title(f'{bias_metric_name.title()} Distribution by {sensitive_column.name}', fontsize=16, weight='bold')  
        plt.xlabel(f'{sensitive_column.name}', fontsize=14)  
        plt.ylabel(f'{bias_metric_name.title()} per Patient', fontsize=14) 
        plt.xticks(rotation=45, ha='right')

        plt.tight_layout()  
        plt.savefig(self.output_dir / f'{sensitive_column.name}_{bias_metric_name}.png') 
        plt.show()

    def _subgroup_analysis_ols(self, sensitive_column: pd.Series, bias_metric: np.ndarray) -> float:
        """Fit a statsmodels OLS model to the bias metric data, using the sensitive feature and print summary based on p_val."""
        one_hot_encoded = pd.get_dummies(sensitive_column, prefix=sensitive_column.name)
        X_columns = one_hot_encoded.columns

        X = one_hot_encoded.values  
        y = bias_metric  

        X = sm.add_constant(X.astype(float), has_constant='add')
        model = sm.OLS(y, X).fit()

        if model.f_pvalue < 0.05:
            output = []

            print(f"⚠️  **Possible Bias Detected in {sensitive_column.name.title()}** ⚠️\n") # noqa: T201
            output.append(f"=== Subgroup Analysis for '{sensitive_column.name.title()}' Using OLS Regression ===\n")

            output.append("Model Statistics:")
            output.append(f"    R-squared:                  {model.rsquared:.3f}")
            output.append(f"    F-statistic:                {model.fvalue:.3f}")
            output.append(f"    F-statistic p-value:        {model.f_pvalue:.4f}")
            output.append(f"    AIC:                        {model.aic:.2f}")
            output.append(f"    Log-Likelihood:             {model.llf:.2f}")

            summary_df = pd.DataFrame({
                'Feature': ['const'] + X_columns.tolist(),     # Predictor names (includes 'const' if added)
                'Coefficient': model.params,    # Coefficients
                'Standard Error': model.bse     # Standard Errors
            })
            table_output = tabulate(summary_df, headers='keys', tablefmt='grid', showindex=False, floatfmt=".3f")
            output.append("Model Coefficients:")
            output.append('\n'.join(['    ' + line for line in table_output.split('\n')]))

            output_text = '\n'.join(output)
            print(output_text) # noqa: T201

            with (self.output_dir / f'{sensitive_column.name}_OLS_model_summary.txt').open('w') as f:
                f.write(output_text)

        return model.f_pvalue

    def _subgroup_analysis_coxph(self, y_true: pd.Series, sensitive_column: pd.Series) -> None:
        """Fit a CoxPH model using the sensitive feature and print summary based on p_val."""
        one_hot_encoded = pd.get_dummies(sensitive_column, prefix=sensitive_column.name)
        df_encoded = y_true.join(one_hot_encoded)

        cph = CoxPHFitter(penalizer=0.0001)
        cph.fit(df_encoded, duration_col='time', event_col='event')            

        if cph.log_likelihood_ratio_test().p_value < 0.05:
            output = []

            print(f"⚠️  **Possible Bias Detected in {sensitive_column.name.title()}** ⚠️") # noqa: T201
            output.append(f"=== Subgroup Analysis for '{sensitive_column.name.title()}' Using Cox Proportional Hazards Model ===\n")

            output.append("Model Statistics:")
            output.append(f"    AIC (Partial):               {cph.AIC_partial_:.2f}")
            output.append(f"    Log-Likelihood:              {cph.log_likelihood_:.2f}")
            output.append(f"    Log-Likelihood Ratio p-value: {cph.log_likelihood_ratio_test().p_value:.4f}")
            output.append(f"    Concordance Index (C-index):   {cph.concordance_index_:.2f}")

            summary_df = pd.DataFrame({
                'Feature': cph.summary.index.to_list(),
                'Coefficient': cph.summary['coef'].to_list(),
                'Standard Error': cph.summary['se(coef)'].to_list()
            })
            table_output = tabulate(summary_df, headers='keys', tablefmt='grid', showindex=False, floatfmt=".3f")
            output.append("Model Coefficients:")
            output.append('\n'.join(['    ' + line for line in table_output.split('\n')]))

            output_text = '\n'.join(output)
            print(output_text) # noqa: T201

            with (self.output_dir / f'{sensitive_column.name}_Cox_model_summary.txt').open('w') as f:
                f.write(output_text)

    def _calculate_fair_metrics(
            self, 
            y_true: pd.Series,
            y_pred: pd.Series,
            sensitive_column: pd.Series, 
            fairness_threshold: float, 
            relative: bool,
            metrics: list
        ) -> pd.DataFrame:
        """Calculate the Fairlearn metrics and return the results in a DataFrame."""
        _metrics = {metric: get_metric(metric, sensitive_features=sensitive_column) for metric in metrics}
        metric_frame = fm.MetricFrame(
            metrics=_metrics, 
            y_true=y_true, 
            y_pred=y_pred, 
            sensitive_features=sensitive_column, 
        )
        result = pd.DataFrame(metric_frame.by_group.T, index=_metrics.keys())
        result = result.rename(
                columns={
                    "mean_prediction": "Demographic Parity",
                    "false_positive_rate": "(FPR) Equalized Odds",
                    "true_positive_rate": "(TPR) Equalized Odds or Equal Opportunity"
                }
            )

        if relative:
            largest_feature = sensitive_column.mode().iloc[0]
            results_relative = result.T / result[largest_feature]
            results_relative = results_relative.applymap(
                lambda x: f"{x:.3f} ✅" if x <= fairness_threshold or 1/x <= fairness_threshold 
                else f"{x:.3f} ❌")
            result = pd.concat([result, results_relative.T.rename(index=lambda x: f"Relative {x}")])

        return result

jarvais.explainer.modules.ImportanceModule

Bases: BaseModel

Source code in src/jarvais/explainer/modules/importance.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class ImportanceModule(BaseModel):
    output_dir: Path = Field(description="Output directory.")

    def model_post_init(self, __context) -> None: # noqa: ANN001
        self.output_dir.mkdir(parents=True, exist_ok=True)

    def __call__(self, trainer: "TrainerSupervised") -> None:

        logger.info("Running Feature Importance Module...")

        if trainer.settings.task == 'survival':
            result = permutation_importance(
                trainer.predictor, 
                trainer.X_test,
                trainer.y_test,
            )

            importance_df = pd.DataFrame(
                {
                    "importance": result["importances_mean"],
                    "stddev": result["importances_std"],
                },
                index=trainer.X_test.columns,
            ).sort_values(by="importance", ascending=False)
            model_name = trainer.predictor.best_model
        else:
            importance_df = trainer.predictor.feature_importance(
                pd.concat([trainer.X_test, trainer.y_test], axis=1))
            model_name = trainer.predictor.model_best

        plot_feature_importance(importance_df, self.output_dir, model_name)

jarvais.explainer.modules.ModelInterpretationModule

Bases: BaseModel

Source code in src/jarvais/explainer/modules/interpretation.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
class ModelInterpretationModule(BaseModel):
    output_dir: Path = Field(description="Output directory.")
    shap: bool = Field(
        description="Whether to plot SHAP values. Only available for classification tasks. This flag exists because the SHAP values are computationally expensive to plot.", 
        default=True,
    )

    def model_post_init(self, __context) -> None: # noqa: ANN001
        self.output_dir.mkdir(parents=True, exist_ok=True)

    def __call__(self, trainer: "TrainerSupervised") -> None:

        logger.info("Running Visualization Module...")

        plot_violin_of_bootstrapped_metrics(
            trainer,
            trainer.X_test,
            trainer.y_test,
            trainer.X_val,
            trainer.y_val,
            trainer.X_train,
            trainer.y_train,
            output_dir=self.output_dir,
        ) 

        if trainer.settings.task in ['binary', 'multiclass']:
            self._plot_classification_diagnostics(trainer)
        elif trainer.settings.task == 'regression':
            self._plot_regression_diagnostics(trainer)

    def _plot_regression_diagnostics(self, trainer: "TrainerSupervised") -> None:

        plot_regression_line(
            trainer.y_test,
            trainer.predictor.predict(trainer.X_test, as_pandas=False),
            output_dir=self.output_dir
        )

        plot_residuals(
            trainer.y_test,
            trainer.predictor.predict(trainer.X_test, as_pandas=False),
            output_dir=self.output_dir
        )

        plot_residual_histogram(
            trainer.y_test,
            trainer.predictor.predict(trainer.X_test, as_pandas=False),
            output_dir=self.output_dir
        )

    def _plot_classification_diagnostics(self, trainer: "TrainerSupervised") -> None:

        y_test_pred = trainer.predictor.predict_proba(trainer.X_test).iloc[:, 1]
        y_val_pred = trainer.predictor.predict_proba(trainer.X_val).iloc[:, 1]
        y_train_pred = trainer.predictor.predict_proba(trainer.X_train).iloc[:, 1]

        plot_confusion_matrix(
            trainer.y_test,
            y_test_pred,
            output_dir=self.output_dir,
            tag="(Test)",
        )

        plot_roc_curve(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            y_val=trainer.y_val.to_numpy(),
            y_val_pred=y_val_pred.to_numpy(),
            y_train=trainer.y_train.to_numpy(),
            y_train_pred=y_train_pred.to_numpy(),
        )

        plot_precision_recall_curve(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            y_val=trainer.y_val.to_numpy(),
            y_val_pred=y_val_pred.to_numpy(),
            y_train=trainer.y_train.to_numpy(),
            y_train_pred=y_train_pred.to_numpy(),
        )

        plot_calibration_curve(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            y_val=trainer.y_val.to_numpy(),
            y_val_pred=y_val_pred.to_numpy(),
            y_train=trainer.y_train.to_numpy(),
            y_train_pred=y_train_pred.to_numpy(),
        )

        plot_sensitivity_flag_curve(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            y_val=trainer.y_val.to_numpy(),
            y_val_pred=y_val_pred.to_numpy(),
            y_train=trainer.y_train.to_numpy(),
            y_train_pred=y_train_pred.to_numpy(),
        )

        plot_sensitivity_specificity_ppv_by_threshold(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            tag="(Test)",
        )

        plot_histogram_of_predicted_probabilities(
            y_test=trainer.y_test.to_numpy(),
            y_pred=y_test_pred.to_numpy(),
            output_dir=self.output_dir,
            tag="(Test)",
        )

        if self.shap:
            plot_shap_values(
                trainer.predictor,
                trainer.X_train,
                trainer.X_test,
                output_dir=self.output_dir
            )

Explainer Settings

jarvais.explainer.settings.ExplainerSettings

Bases: BaseModel

Source code in src/jarvais/explainer/settings.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class ExplainerSettings(BaseModel):
    output_dir: Path = Field(
        description="Output directory.",
        title="Output Directory",
    )
    settings_path: Path | None = Field(
        default=None,
        description="Path to settings file.",
    )
    settings_schema_path: Path | None = Field(
        default=None,
        description="Path to settings schema file.",
    )

    interpretation: ModelInterpretationModule
    importance: ImportanceModule
    bias_audit: BiasAuditModule

    def model_post_init(self, context: Any) -> None:
        self.output_dir.mkdir(parents=True, exist_ok=True)