TrainerSupervised
The TrainerSupervised
class is part of the jarvais.trainer
module.
jarvais.trainer.TrainerSupervised
TrainerSupervised class for supervised jarvAIs workflows.
This class provides functionality for feature reduction, training models (e.g., AutoGluon, survival models), and performing inference. It supports various tasks such as binary/multiclass classification, regression, and survival analysis.
Attributes:
Name | Type | Description |
---|---|---|
task |
str
|
Type of task. Must be one of {'binary', 'multiclass', 'regression', 'survival'}. |
reduction_method |
str | None
|
Feature reduction method. Supported methods include {'mrmr', 'variance_threshold', 'corr', 'chi2'}. |
keep_k |
int
|
Number of features to retain during reduction. |
output_dir |
str | Path
|
Directory for saving outputs. Defaults to the current working directory. |
Example
from jarvais.trainer import TrainerSupervised
trainer = TrainerSupervised(
task="binary",
reduction_method="mrmr",
keep_k=10,
output_dir="./results"
)
trainer.run(data=my_data, target_variable="target")
predictions = trainer.infer(new_data)
Source code in src/jarvais/trainer/trainer.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|
run(data, target_variable, test_size=0.2, exclude=None, stratify_on=None, explain=False, k_folds=5, **kwargs)
Execute the jarvAIs Trainer pipeline on the given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The input dataset containing features and target. |
required |
target_variable
|
str
|
The name of the target variable in the dataset. |
required |
test_size
|
float
|
Proportion of the dataset to include in the test split. Must be between 0 and 1. Default is 0.2. |
0.2
|
exclude
|
list of str
|
List of columns to exclude from the feature set. Default is an empty list. |
None
|
stratify_on
|
str
|
Column to use for stratification, if any.
Must be compatible with |
None
|
explain
|
bool
|
Whether to generate explainability reports for the model. Default is False. |
False
|
k_folds
|
int
|
Number of folds for cross-validation. If 1, uses AutoGluon-specific validation. Default is 5. |
5
|
kwargs
|
dict
|
Additional arguments passed to the AutoGluon predictor's |
{}
|
Source code in src/jarvais/trainer/trainer.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
model_names()
Returns all trainer model names.
This method retrieves the names of all models associated with the current predictor. It requires that the predictor has been trained.
Returns:
Name | Type | Description |
---|---|---|
list |
List[str]
|
A list of model names available in the predictor. |
Raises:
Type | Description |
---|---|
ValueError
|
If the model has not been trained ( |
Source code in src/jarvais/trainer/trainer.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
infer(data, model=None)
Perform inference using the trained predictor on the provided data.
This method generates predictions based on the input data using the specified model. If no model is provided, the default model is used. The predictor must be trained before inference can be performed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The input data for which inference is to be performed. |
required |
model
|
str
|
The name of the model to use for inference. If None, the default model is used. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The prediction results from the model. |
Raises:
Type | Description |
---|---|
ValueError
|
If the model has not been trained ( |
ValueError
|
If the specified model name is not found in the predictor. |
Source code in src/jarvais/trainer/trainer.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
load_trainer(project_dir)
classmethod
Load a trained TrainerSupervised from the specified directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project_dir
|
str or Path
|
The directory where the trainer was run. |
required |
Returns:
Name | Type | Description |
---|---|---|
trainer |
TrainerSupervised
|
The loaded Trainer. |
Source code in src/jarvais/trainer/trainer.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
|