TrainerSupervised
The TrainerSupervised
class is part of the jarvais.trainer
module.
jarvais.trainer.TrainerSupervised
TrainerSupervised is a class for automating the process of feature reduction, model training, and evaluation for various machine learning tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
str | Path
|
The output directory for saving the trained model and data. |
required |
target_variable
|
str | list[str]
|
The column name of the target variable, or a list of two column names for survival analysis. |
required |
task
|
str
|
The type of task to perform, e.g. 'binary', 'multiclass', 'regression', or 'survival'. |
required |
stratify_on
|
str | None
|
The column name of a variable to stratify the train-test split over. If None, no stratification will be performed. |
None
|
test_size
|
float
|
The proportion of data to use for testing. Default is 0.2. |
0.2
|
k_folds
|
int
|
The number of folds to use for cross-validation. Default is 5. |
5
|
reduction_method
|
str | None
|
The method to use for feature reduction. If None, no feature reduction will be performed. |
None
|
keep_k
|
int
|
The number of features to keep after reduction. Default is 2. |
2
|
random_state
|
int
|
The random state for reproducibility. Default is 42. |
42
|
explain
|
bool
|
Whether to generate explanations for the model. Default is False. |
False
|
Source code in src/jarvais/trainer/trainer.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
from_settings(settings_dict)
classmethod
Initialize a TrainerSupervised instance with a given settings dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dict
|
A dictionary containing the settings for the TrainerSupervised instance. |
required |
Returns:
Name | Type | Description |
---|---|---|
TrainerSupervised |
TrainerSupervised
|
An instance of TrainerSupervised with the given settings. |
Source code in src/jarvais/trainer/trainer.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
model_names()
Returns all trainer model names.
This method retrieves the names of all models associated with the current predictor. It requires that the predictor has been trained.
Returns:
Name | Type | Description |
---|---|---|
list |
list[str]
|
A list of model names available in the predictor. |
Source code in src/jarvais/trainer/trainer.py
176 177 178 179 180 181 182 183 184 185 186 187 |
|
infer(data, model=None)
Make predictions on new data using the trained predictor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
The new data to make predictions on. |
required |
model
|
str | None
|
The model to use for prediction. If None, the best model will be used. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The predicted values. |
Source code in src/jarvais/trainer/trainer.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|