Skip to content

Navigating Our Tutorial Notebooks

The following notebooks showcase examples of how you can use jarvAIs for classification, regression, and survival tasks!

All of the notebooks below use clinical data from RADCURE.

The RADCURE dataset was collected clinically for radiation therapy treatment 
planning and retrospectively reconstructed for quantitative imaging research.

Accessing the Data

You can find the raw and processed clinical data here.

Data Processing

The following function was used to process the raw data:

Source code in src/jarvais/utils/functional.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def process_RADCURE_clinical(df):
    """
    Processes RADCURE clinical data.

    Raw data found here: https://www.cancerimagingarchive.net/collection/radcure/
    """
    df_converted = pd.DataFrame({
        'Study ID': df['patient_id'],
        'survival_time': df['Length FU'],
        'death': df['Status'].apply(lambda x: 1 if x == 'Dead' else 0),
        'age at dx': df['Age'],
        'Sex': df['Sex'],
        'T Stage': df['T'],
        'N Stage': df['N'],
        'Stage': df['Stage'],
        'Dose': df['Dose'],
        'Chemotherapy': df['Chemo'].apply(lambda x: 1 if x != 'none' else 0),
        'HPV Combined': df['HPV'].apply(lambda x: 1 if isinstance(x, str) and 'positive' in x.lower() else None),
        'Smoking Status': df['Smoking Status'],
        'Disease Site': df['Ds Site'].str.lower()
    })

    return df_converted